
KEY-AGGREGATE CRYPTOSYSTEM AND PARALLEL ALLOCATION IN CLOUD STORAGE…
M.SATHISHKUMAR et al.,

263

International Journal of Technology and Engineering System (IJTES)
 Vol 7. No.4 2015 Pp. 263-267
©gopalax Journals, Singapore
available at : www.ijcns.com

ISSN: 0976-1345

KEY-AGGREGATE CRYPTOSYSTEM AND PARALLEL

ALLOCATION IN CLOUD STORAGE

M.SATHISHKUMAR,R.SATHYAMOOTHI, B.VENKATESH,S.VIGNESHKUMAR
Dept. Of CSE, V.R.S.College Of Engg.And Tech,

Villupuram

ABSTRACT

Today Cloud computing is on demand as it offers dynamic flexible resource allocation, for reliable and guaranteed
services in pay-as-you-use manner, to Cloud service users. So there must be a provision that all resources are made
available to requesting users in efficient manner to satisfy their needs. This resource provision is done by considering
the Service Level Agreements (SLA) and with the help of parallel processing. Recent work considers various
strategies with single SLA parameter. Hence by considering multiple SLA parameter and resource allocation by
preemption mechanism for high priority task execution can improve the resource utilization in Cloud. In this paper
we propose an algorithm which considered Preemptable task execution and multiple SLA parameters such as
memory,network bandwidth, and required CPU time. An obtained experimental results show that in a situation
where resource contention is fierce our algorithm provides better utilization of resources.
Keywords- Cloud computing, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Resource
management, Software as a Service (SaaS), Virtual machine, Virtualization.

I . INTRODUCTION

Cloud computing is the delivery of computing as a
service rather than a product, whereby shared resources,
software and information are provided to users over the
network. Cloud computing providers deliver application
via the Internet, which are accessed from web browser,
while the business software and data are stored on
servers at a remote location. Cloud providers are able to
attain the agreed SLA, by scheduling resources in
efficient manner and by deploying application on proper
VM as per the SLA objective and at the same time
performance of the applications must be optimized.
Presently, there exists a more work done on scheduling
of applications in Clouds [1], [2], [3]. These approaches
are usually considering one single SLA objective such as
cost of execution, execution time, etc. Due to
combinatorial nature scheduling algorithm with multiple
SLA objective for optimal mapping of workload with
multiple SLA parameters to resources is found to be
NPhard [4]. The available solutions are based on the use
of heuristics.
When a job is submitted to the clouds, it is usually
partitioned into several tasks. Following two questions
are to be consider when applying parallel processing in
executing these tasks: 1) how to allocate resources to

tasks; 2) task are executed in what order in cloud; and 3)
how to schedule overheads when VMs prepare,

terminate or switch tasks. Task scheduling and resource
allocation can solve these three problems. In embedded
systems [5], [6] and in high performance computing [7],
[8] task scheduling and resource allocation have been
studied. Typically, efficient provisioning requires two
distinct steps or processes: (1) initial static planning step:
the initially group the set of VMs, then classify them and
deployed onto a set of physical hosts; and (2) dynamic
resource.

II . RELATEDWORK

In [9] author proposed architecture, using feedback
control theory, for adaptive management of virtualized
resources, which is based on VM. In this VM-based
architecture all hardware resources are pooled into
common shared space in cloud computing infrastructure
so that hosted application can access the required
resources as per their need to meet Service Level
Objective (SLOs) of application. The adaptive manager
use in this architecture is multi-input multi-output
(MIMO) resource manager, which includes 3 controllers:
CPU controller, memory controller and I/O controller, its

KEY-AGGREGATE CRYPTOSYSTEM AND PARALLEL ALLOCATION IN CLOUD STORAGE… M.SATHISHKUMAR et al.,

264

goal is regulate multiple virtualized resources utilization
to achieve SLOs of application by using control inputs
per-VM CPU, memory and I/O allocation.
The seminal work of Walsh et al. [10], proposed a
general two-layer architecture that uses utility functions,
2013 International Conference on Intelligent Systems
and Signal Processing (ISSP) adopted in the context of
dynamic and autonomous resource allocation, which
consists of local agents and global arbiter. The
responsibility of local agents is to calculate utilities for
given current or forecasted workloads and range of
resources, for each AE and results are transfer to global
arbiter. Where, global arbiter computes near-optimal
configuration of resources based on the results provided
by the local agents. In global arbiter, the new
configurations applied by assigning new resources to the
AEs and the new configuration computed either at the
end of fixed control intervals or in an event triggered
manner or anticipated SLA violation. In [11], authors
propose an adaptive resource allocation algorithm for the
cloud system with preempt able tasks in which
algorithms adjust the resource allocation adaptively
based on the updation of the actual task executions.
Adaptive list scheduling (ALS) and adaptive min-min
scheduling (AMMS) algorithms are used for task
scheduling which includes static task scheduling, for
static resource allocation, is generated offline. The
online adaptive procedure is used for re-evaluating the
remaining static resource allocation repeatedly with
predefined frequency. In each re-evaluation process, the
schedulers are re-calculating the finished time of their
respective submitted tasks, not the tasks that are assigned
to that cloud. The dynamic resource allocation based on
distributed multiple criteria decisions in computing cloud
explain in [12].
In it, the author’s contribution is tow-fold, first
distributed architecture is adopted, in which resource
management is divided into independent tasks, each of
which is performed by Autonomous Node Agents (NA)
in ac cycle of three activities: (1) VMPlacement, in it
suitable physical machine (PM) is found which is
capable of running a given VM and then assigned VM to
that PM, (2) Monitoring, in it total resources use by
hosted VM are monitored by NA, (3) In VMSelection, if
local accommodation is not possible, a VM need to
migrate at another PM and process loops back to into
placement. And second, using PROMETHEE method,
NA carry out configuration in parallel through multiple
criteria decision analysis.
This approach is potentially more feasible in large data
centers than centralized approaches. The problem of
resource allocation is considered in [13], to optimize the
total profit gained from the multidimensional SLA
contracts for multi-tire application. In it the upper bound
of total profit is provided with the help of force-directed
resource assignment (FRA) heuristic algorithm, in which
initial solution is based on provided solution for profit
upper bound problem. Next, distribution rates are fixed
and local optimization step is use for improving resource
sharing. Finally, a resource consolidation technique is

applied to consolidate resources to determine the active
(ON) servers and further optimize the resource
assignment.

III. USETECHNIQUES

In this section we are describing SLA based resource
provisioning and online adaptive scheduling for
Preemptable task execution, these two methodologies
which are combined in proposed algorithm for effective
utilization of cloud resources to meet the SLA objective.
A. Cloud Resource provisioning and schedulingheuristic

The service requests from customers host by combining
the three different layers of resource provisioning as
shown in following figure 1[24]. Service deployment
requests from customers is placed to the service portal
(step 1 in Figure1), which forward the requests to the
request management and processing component to
validate the requests with the help of SLA(step 2). If the
request is valid, it is then passed to the scheduler and
load-balancer (step 3). For deploying the requested
service, scheduler selects the appropriate VMs, as per
SLA and priority, through the provisioning engine in
PaaS layer and the load-balancer balances the service
provisioning among the running VMs (step 4). The VMs
on the virtualization layer manage by provision engine
and the virtualization layer interacts with the physical
resources with the help of the provision engine in IaaS
layer (step 5). The LoM2HiS framework monitors the
lowlevel resource metrics of the physical resources at
IaaS layer [25] (step 6). If SLA violation occurs, reactive
actions are provided by the knowledge database
techniques [26] in FoSII (step 7). The requested service
status and the SLA information are communicated back
with the service portal (step 8). Provisioning can be done
at the single layers alone. However, approach which we
considered in [24] aims to provide an integrated resource
provisioning strategy.
The SLA terms are used to find a list of appropriate VMs
(AP) capable of provisioning the requested service (R).
The load-balancer is presented below in Algorithm 1.
Appropriate VM list is provided as input to it, (line 1 in
Algorithm 2). In its operations, in order to know how to
balance the load among the VMs it first finds out the
number of available running VMs in the data centre (line
2). In the next step, it gets a list of VMs which are

KEY-AGGREGATE CRYPTOSYSTEM AND PARALLEL ALLOCATION IN CLOUD STORAGE… M.SATHISHKUMAR et al.,

265

already allocated to job i.e. list of used VMs. (line 3). It
clears the list if this list is equal to the number of running
VMs, because that means all the VMs are currently
allocated to some applications (lines 4-7). Algorithm 1
Load Balancer Input: AP(R,AR) availableVMList //list
of available VMs form each cloud usedVMList //list of
VMs,currently provision to certain job
deployableVm=null if size(usedVMList)=
size(availbleVMList) then clear usedVMList End if for
vm in (AP,R,AR) do if vm not in usedVMList then Add
VM to usedVMList deployableVm= vm Break End if
End for Return deployableVm Therefore, the first VM
from the appropriate and available VM list can be
selected for the deployment of the new job request.
Lastly, the selected VM will be added to the list of used
VMs so that the load-balancer will not select it in the
next iteration (lines 8-15).

B.Preemptable task execution
When a scheduler receives customer’s service request, it
will first partition that service request into tasks in the
form of a DAG. Then initially static resource allocation
is done. In [11] authors proposed two greedy algorithms,
to generate the static allocation: the cloud list scheduling
(CLS) and the cloud min-min scheduling (CMMS).
1) Cloud list scheduling (CLS): This CLS is similar to
CPNT [27]. The definitions used for listing the task are
provided as follow. The earliest start time (EST) and the
latest start time (LST) of a task are shown as in (1) and
(2).The entry-tasks have EST equals to 0. And The LST
of exit-tasks equal to their EST.
Algorithm 2 Forming a task list based on priorities
Require (input): A DAG, Average execution time AT of
every task in the DAG Ensure (output): A list of task P
based on priorities
The EST is calculated for every task
The LST is calculated for every task 3. Empty list P and
stack S, and pull all task in the list of task U
4. Push the CN task into stack S in decreasing order of
their LST 5. While the stack S is not empty do
If top(S) has un-stacked immediate predecessors then
S the immediate predecessor with least
LST
Else
P top(S)
Pop top(S)
End if
End while
Once the above algorithm 2 forms the list of task
according their priority, we can allocate resources to
tasks in the order of formed list. When all the
predecessor tasks of the assigned task are finished and
cloud resources allocated to them are available, the
assigned task will start its execution. This task is
removed from the list after its assignment. This
procedure is repeats until the list is empty.
2) Cloud min-min scheduling (CMMS): Min-min
scheduling is popular greedy algorithm [28]. The

dependencies among tasks not considered in original
minmin algorithm. So in the dynamic min-min algorithm
used in [2], authors maintain the task dependencies by
updating the mappable task set in every scheduling step.
The tasks whose predecessor tasks are all assigned are
placed in the map able task set. Algorithm 3 shows the
pseudo codes of the CMMS algorithm.
A cloud scheduler record execution schedule of all
resources using a slot. When an AR task is assigned to a
cloud, first resource availability in this cloud will be
checked by cloud scheduler. Since besteffort task can be
preempted by AR task, the only case when most of
resources are reserved by some other AR task. Hence
there are not enough resources left for this AR task in the
required time slot. submitted to this cloud, not the tasks
that are assigned to this cloud.

IV . SCHEDULING ALGORITHM

In proposed priority based scheduling algorithm we have
modified the scheduling heuristic in [24] for executing
highest priority task with advance reservation by
preempting best-effort task as done in [11]. Algorithm 4
shows the pseudo codes of priority based scheduling
algorithm (PBSA).
Algorithm 3 Priority Based Scheduling
Algorithm (PBSA)
Input: UserServiceRequest
//call Algorithm 2 to form the list of task based on
priorities
3.getglobalAvailableVMList and gloableUsedVMList
and also availableResourceList from each cloud
schedular
4. // find the appropriate VMListfromeach cloud
scheduler 5. if AP(R,AR) != then
// call the algorithm 1 load balancer
deployableVm=load-
balancer(AP(R,AR))
8. Deploy service on deployableVM
deploy=true
Else if R has advance reservation and best-effort task is
running on any cloud then 11. // Call algorithm 3 CMMS
for executing
R with advance reservation
12. Deployed=true
13.Else if global Resource Able To Host
Extra VM then
Start new VM Instance
Add VM To Available VM List
Deploy service on new VM
Deployed=true
Else
queue service Request until
queue Time > waiting Time
Deployed=false
End if
If deployed then
return successful;

KEY-AGGREGATE CRYPTOSYSTEM AND PARALLEL ALLOCATION IN CLOUD STORAGE… M.SATHISHKUMAR et al.,

266

terminate;
Else 27. return failure;
28. terminate.

As shown above in Algorithm 4, the customers’ service
deployment requests (R), which are composed of the
SLA terms (S) and the application data (A) to be
provisioned, are provided as input to
scheduler (line 1 in Algorithm)
1). When service request (i.e. job) arrive at cloud
scheduler, scheduler divide it in tasks as per their
dependencies then the Algorithm 2 is called to form the
list of tasks based on their priority.
2). In the first step, it extracts the SLA terms, which
forms the basis for finding the VM with the appropriate
resources for deploying the application. In next step, it
collects the information about the number of running
VMs in each cloudand the total available resources .
3). According to SLA terms appropriate VMs (AP) list is
form, which are capable of provisioning the requested
service .

Once the list of appropriate VMs is formed, the
Algorithm 1- load-balancer decides which particular VM
is allocated to service request in order to balance the load
in the data center of each cloud (lines 6-9). When there is
no VM with the appropriate resources running in the
data center of any cloud, the scheduler checks if the
service request (R) has advance reservation then it search
for best-effort task running on any cloud or not, if it
found besteffort task then it calls Algorithm 3 CMMS
for executing advance reservation request by preempting
best-effort task (lines 10-12).

V . EXPERIMENTAL RESULTS

Experiment setup
We evaluate the performance of our priority based
scheduling algorithm using CloudSim simulator.
CloudSimis a scalable simulation tool offering features
like support for modeling service brokers, resource
provisioning, application allocation policies, and
simulation of large scale Cloud computing environments
including data centers, on a single computing machine.
Further information about CloudSim can be found in
[29]. With different set of jobs simulation is done in 10
runs. In each run of simulation, we simulate a set of 70
different service requests (i.e. jobs), and each service
request is composed of up to 18 sub-tasks. We consider
4 clouds in the simulation. All 70 service requests will
be submitted to random clouds at arbitrary arrival time.
Among these 70 service request, 15 requests are in the
AR modes, while the rest are in the best-effort modes,
with different SLA objectives. The scheduler will re-
schedule these tasks with a predefined probability . The
parameters in Table 1 are set in simulation randomly
according to their maximum and minimum values. Since
we focus only on the scheduling algorithms, we do our

simulations locally without implementing in any exiting
cloud system or using VM interface API.

We consider two situations for arrival of service request.
In first situation, called as loose situation, we spread
arrival time of request widely over time so that request
does not need to contend resources in cloud. In other
situation we set arrival time of requests close to each
other, so known as tight situation. The time elapses from
request is submitted to the request is finished, is defined
as execution time.

VI . RESULTS
The average job execution time in loose situation. We
find out that the PBSA algorithm has the minimum
average execution time. The resource contentions occur
when best-effort job is preempted by AR job. As
resource contention is less in loose situation, so that
estimated finish time of job is close to the actual finish
time. Hence adaptive procedure does not impact the job
execution time significantly.

Figure 2. Average job execution time in loose situation
In figure 3 tight situation results are shown in which
PBSA performs better than CMMS. In tight situation
resource contention is more so the actual finish time of
job is often later than estimated finish time. As AR job
pre-empt best-effort job, the adaptive procedure with
updated information works more significantly in tight
situation.

KEY-AGGREGATE CRYPTOSYSTEM AND PARALLEL ALLOCATION IN CLOUD STORAGE… M.SATHISHKUMAR et al.,

267

Figure 3. Average job execution time in tight situation

VII . CONCLUSIONS

In this paper, we present dynamic resource allocation
mechanism for Preemptable jobs in cloud. We propose
priority based algorithm, in which considering multiple
SLA objectives of job, for dynamic resource allocation
to AR job by preempting best-effort job.
Simulation results show that PBSA perform better than
CMMS in resource contention situation. The extension
or future work can be the prediction VM which will be
free earlier and according its capability selecting the task
from waiting queue for execution on that VM.

REFERENCES

S. K. Garg, R. Buyya, and H. J. Siegel, “Time and cost
trade off management for scheduling parallel
applications on utility grids,” Future Generation.
Computer System, 26(8):1344–1355, 2010.

S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle
swarm optimizationbased heuristic for scheduling
workflow applications in cloud computing
environments,” in AINA ’10: Proceedings of the 2010,
24th IEEE International Conference on Advanced
Information Networking and Applications, pages 400–
407, Washington, DC, USA, 2010, IEEE Computer
Society.

M. Salehi and R. Buyya, “Adapting market-oriented
scheduling policies for cloud computing,” In Algorithms
and Architectures for Parallel Processing, volume 6081
of Lecture Notes in Computer Science, pages 351–362.
Springer Berlin / Heidelberg, 2010.

J. M. Wilson, “An algorithm for the generalized
assignment problem with special ordered sets,” Journal
of Heuristics, 11(4):337–350, 2005.

M. Qiu and E. Sha, “Cost minimization while satisfying
hard/soft timing constraints for heterogeneous embedded
systems,” ACMTransactions on Design Automation of

Electronic Systems (TODAES), vol. 14, no. 2, pp. 1–30,
2009.

M. Qiu, M. Guo, M. Liu, C. J. Xue, and E. H.-M. S. L.
T. Yang, “Loop scheduling and bank type assignment for
heterogeneous multibank memory,” Journal of Parallel
and Distributed Computing(JPDC), vol. 69, no. 6, pp.
546– 558, 2009.

A. Dogan and F. Ozguner, “Matching and scheduling
algorithms for minimizing execution time and failure
probability of applications in heterogeneous computing,”
IEEE Transactions on Parallel and Distributed Systems,
pp. 308–323, 2002.

T. Hagras and J. Janecek, “A high performance, low
complexity algorithm for compile-time task scheduling
in heterogeneous systems,” Parallel Computing, vol. 31,
no. 7, pp. 653–670, 2005.

“Adaptive Management of Virtualized Resources in
Cloud Computing Using Feedback Control,” in First
International Conference on Information Science and
Engineering, April 2010, pp. 99-102.

W. E. Walsh, G. Tesauro, J. O.
Kephart, and R. Das, “Utility Functions in Autonomic
Systems,” in ICAC ’04: Proceedings of the First
International Conference on Autonomic Computing.
IEEE Computer Society, pp. 70–77, 2004.

Jiayin Li, MeikangQiu, Jian-Wei Niu,
Yu Chen, Zhong Ming, “Adaptive
Resource Allocation for Preempt able Jobs in Cloud
Systems,” in 10th International Conference on Intelligent
System Design and Application, Jan. 2011, pp. 31-36.

